An improved calibration method for the matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resononance analysis of 15N-metabolically- labeled proteome digests using a mass difference approach.
نویسندگان
چکیده
High mass measurement accuracy of peptides in enzymatic digests is critical for confident protein identification and characterization in proteomics research. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) can provide low or sub-ppm mass accuracy and ultrahigh resolving power. While for ESI-FT-ICR-MS, the mass accuracy is generally 1 ppm or better, with matrix-assisted laser desorption/ionization (MALDI)-FT-ICR-MS, the mass errors can vary from sub-ppm with internal calibration to over 100 ppm with conventional external calibration. A novel calibration method for (15)N-metabolically labeled peptides from a batch digest of a proteome is described which corrects for space charge induced frequency shifts in FT-ICR spectra without using an internal calibrant. This strategy utilizes the information from the mass difference between the (14)N/(15)N peptide peak pairs to correct for space charge induced mass shifts after data collection. A procedure for performing the mass correction has been written into a computer program and has been successfully applied to high-performance liquid chromatography-MALDI-FT- ICR-MS measurement of (15)N-metabolic labeled proteomes. We have achieved an average measured mass error of 1.0 ppm and a standard deviation of 3.5 ppm for 900 peptides from 68 MALDI-FT-ICR mass spectra of the proteolytic digest of a proteome from Methanococcus maripaludis.
منابع مشابه
Accurate mass measurements for peptide and protein mixtures by using matrix-assisted laser desorption/ionization Fourier transform mass spectrometry.
A new analytical scheme based on a combination of scanning FTMS, multiple-ion filling, and potential ramping methods has been developed for accurate molecular mass measurement of peptide and protein mixtures using broadband MALDI-FTMS. The scanning FTMS method alleviates the problems of time-of-flight effect for FTMS with an external MALDI ion source and provides a systematic means of sampling ...
متن کاملSurface-induced dissociation of ions produced by matrix-assisted laser desorption/ionization in a fourier transform ion cyclotron resonance mass spectrometer.
Intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source was constructed and interfaced with a 6-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies. First MALDI-SID results in FT-ICR are presented, demonstrating unique advantages of SID over conventional FT-ICR MS ion activation te...
متن کاملMatrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application,...
متن کاملHigh-resolution Mass Spectrometry and Accurate Mass Measurements with Emphasis on the Characterization of Peptides and Proteins by Matrix-assisted Laser Desorption/Ionization Time-of-Ñight Mass Spectrometry
Fundamental concepts of high-resolution mass spectrometry as it relates to the issue of accurate mass measurements are presented. Important issues speciÐc to magnetic sector instruments, Fourier transform ion cyclotron resonance and time-of-Ñight (TOF) methods are discussed. Recent high-resolution TOF measurements on peptides and proteins, ionized by matrix-assisted laser desorption/ionization ...
متن کاملMethods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry.
Oligosaccharides are the third most abundant component in human milk. In the past decades, it became apparent that they would be able to protect against pathogens and participate in the development of the gut microflora for infants. However, their role in infants' nutrition and development remains poorly understood. To better understand this function, it is extremely important to have a quantit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of mass spectrometry
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2012